Upper Cretaceous Aeolian Depositional Systems: the Marilia Formation in the regions between Northwestern São Paulo and Southern Goiás

Keywords: Aeolian Deposits, Facies Analysis, Petrographic Analysis, Marilia Formation

Abstract

This paper aimed at characterizing the sandstones and paleosols of the Marília Formation (Bauru Basin - upper Cretaceous), present in the southern region of Goiás and in the region of Marília (northwestern São Paulo), by means of petrographic analyses and field studies. Facies and architectural elements, compositional analyses of conglomerates and petrographic analyses of sandstones and paleosols were carried out, thus defining, and interpreting the depositional mechanisms. The Formação Marília, in the southern region of Goiás, is interpreted as an extensive eolic sand sheet, cut by ephemeral rivers, in which cyclic alternation between eolic deposits and paleosols occurs. The construction of the lithosomes was determined by different paleoclimatic conditions, responsible for moments with higher water availability, which favored the formation of soils, and others with lower water availability, favorable to the sedimentation of sandy deposits with eolian undulating marks. Three architectural elements were recognized: paleosols, sandy sheet deposits dominated by eolian wavy marks, and ephemeral river deposits. Paleosols are the most frequent elements and consist prevalently of Aridissols and subordinately of Alphissols. The sandstones were classified into lithoarenites (predominantly), sublithoarenites and feldspathic lithoarenites. The Marília Formation, in the Marília region, shows different development conditions in the lower and upper part of the Serra de Echaporã: in the lower part eolian sandstone deposits and ephemeral lakes alternate with paleosols indicating high water table and in the upper part eolian deposits and paleosols of arid and semiarid climate occur. Three architectural elements were recognized: paleosols, sand sheet deposits dominated by eolian wavy marks, and playa lake deposits. The paleosols consisted prevalently of Aridissols and subordinately of a gleying paleosol type. No ephemeral fluvial deposits were found.  The sandstones were classified into sublithoarenites and subarcosites (predominantly).  A construction model was proposed for this former sand sheet.  The construction phase was characterized by sediment input by rivers during a wetter period (first input), and by several cycles of erosion of ephemeral river deposits and soils during drier climatic phases (second input).

References

Ahlbrandt, T.S, Andrews, S. and Gwynne, D.T., 1978. Bioturbation in eolian deposits, Journal of Sedimentary Petrology, 48(3), pp. 839–848. https://doi.org/10.1306/212F7586-2B24-11D7-8648000102C1865D

Bagnold, R.A., 1941. The physics of blown sand and desert dunes. Methuen, London. https://doi.org/10.1007/978-94-009-5682-7

Barcelos, J.H., 1984. Reconstrução paleogeográ-fica da sedimentação do Grupo Bauru baseada na sua redefinição estratigráfica parcial em território paulista e no estudo preliminar fora do estado de São Paulo. Tese de Livre Docência, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Rio Claro.

Barroso, A.S. and Carvalho, M.D., 1994. Instruções para preenchimento de planilhas litológicas. In: Apostila Petrobrás.

Basilici, G., Dal’ Bó, P.F.F. and Ladeira, F.S.B., 2009. Climate-induced sediment-palaeosol cycles in a Late Cretaceous dry aeolian sand sheet: Marília Formation (NW Bauru Basin, Brazil) Sedimentology, 56(6), pp. 1876-1904. https://doi.org/10.1111/j.1365-3091.2009.01061.x

Basilici, G. and Dal' Bó, P.F., 2010. Anatomy and controlling factors of a Late Cretaceous Aeolian sand sheet: The Marília and the Adamantina formations, NW Bauru Basin, Brazil, Sedimentary Geology, 226(1-4), pp. 71-93. https://doi.org/10.1016/j.sedgeo.2010.02.010

Batezelli, A., 2003. Análise da sedimentação cretácea no Triângulo Mineiro e sua correlação com áreas adjacentes. Tese (Doutorado em Geociências). Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Rio Claro. Disponível em <https://repositorio.unesp.br/handle/ 11449/103017> [Acessado 22 maio 2023].

Batezelli, A., Saad, A.R., Perinotto, J.A.J., Fúlfaro, V.J., 2006. Análise estratigráfica aplicada à porção norte e nordeste da Bacia Bauru (Cretáceo Superior). Revista Brasileira de Geociências, 36(2), pp. 253-268.

Blair, T.C., 2003. Features and origin of the giant Cucomungo Canyon alluvial fan, Eureka Valley, California. In: Chan, M.A. and Archer, A.W., 2003. Extreme depositional environments: mega end members in geologic time. Geological Society of America Special Paper, 370. https://doi.org/10.1130/0-8137-2370-1.105

Breed, C.S., Mccauley, J.F. and Davis, P.A., 1987. Sand sheet of the eastern Sahara and ripples blankets on Mars. In: Frostick, L., Reid, I. (eds.), Desert sediments: ancient and modern. Geological Society of America Special Publication, 35, pp. 337-359. https://doi.org/10.1144/GSL.SP.1987.035.01.23

Carvalho, I.S., Campos, A.C.A. and Nobre, P.H., 2005. Baurusuchus salgadoensis, a new Crocodylomorpha from the Bauru Basin (Creataceous), Brazil. Gondwana Research, 8(1), pp. 11-30. https://doi.org/10.1016/S1342-937X(05)70259-8

Dal’ Bó, P.F.F., Basilici, G., Angelica, R.S. and Ladeira, F.S.B., 2009. Paleoclimatic interpretations from pedogenic calcretes in a Maastrichtian semi-arid eolian sand-sheet palaeoenvironment: Marília Formation (Bauru Basin, southeastern Brazil). Cretaceous Research, 30(3), pp. 659-675. https://doi.org/10.1016/j.cretres.2008.12.006

Dal’bó, P.F.F., 2008. Inter-relação paleossolos e sedimentos em lençóis de areia eólica da Formação Marília (noroeste da Bacia Bauru). Dissertação de Mestrado. Instituto de Geociências, Universidade Estadual de Campinas.

De Raaf, J.F.M., Boersma, J.R. and Van Gelder, A., 1977. Wave-generated structures and sequences from a shallow marine succession, Lower Carboniferous, County Cork, Ireland. Sedimentology, 24(4), pp. 451-483. https://doi.org/10.1111/j.1365-3091.1977.tb00134.x

Dias-Brito, D., Musacchio, E.A., Castro, J.C., Aranhão, M.S.A.S., Suarez, J.M. e Rodrigues, R., 2001. Grupo Bauru: uma unidade continental do Cretáceo no Brasil – concepçõess baseadas em dados micropaleontológicos, isotópicos e estratigráficos, Revue de Paléobiologie, 20(1), pp. 245-304

Duchaufour, P., 1982. Pedology: pedogenesis and classification. London: George Allen & Unwin. https://doi.org/10.1007/978-94-011-6003-2

El-Baz, F., Maingue, M. and Robinson, C., 2000. Fluvio-aeolian dynamics in the north-eastern Sahara: the relationship between fluvial/aeolian systems and ground-water concentration. Journal of Arid Environments, 44(2), pp. 173-183. https://doi.org/10.1006/jare.1999.0581

Evans, O.F., 1941. The classification of wave-formed ripple marks. Journal of Sedimentary Research, SEPM: Society for Sedimentary Geology, 11: (1), pp. 37-41. https://doi.org/10.1306/D42690DF-2B26-11D7-8648000102C1865D

Fernandes, L.A. e Coimbra, A.M., 1996. A Bacia Bauru (Cretáceo Superior, Brasil). Anais da Academia Brasileira de Ciências, 68(2), pp. 195-205. Disponível em <http://memoria.bn.br/DocReader/158119/33783> [Acessado 22 maio 2023].

Fernandes, L.A. e Coimbra, A.M., 2000. Revisão estratigráfica da parte oriental da Bacia Bauru (Neocretáceo). Revista Brasileira de Geociências, 30(4), pp. 717-728. http://dx.doi.org/10.25249/0375-7536.2000304717728

Ferreira-Júnior, P.D. e Castro, P.T.A., 2001. Associação vertical de fácies e análise de elementos arquitecturais: concepções concorrentes e complementares na caracterização de ambientes aluviais. Revista Electrónica de Ciências da Terra. Geosciences On-line Journal. GEOTIC – Sociedade Geológica de Portugal, 1(1), pp. 1-35. Disponível em <http://www.dct.uminho.pt/e-Terra/artigos/pfjr/pfjr.pdf> [Acessado 22 maio 2023].

Folk, R.L., 1968. Petrology of sedimentary rocks. Austin: Hemphill Publishing Company.

Fryberger, S.G., Ahlbrandt, T.S. and Andrews, S., 1979. Origin, sedimentary features, and significance of low angle aeolian ‘sand sheet’ deposits, Great Sand Dunes National Monument and vicinity, Colorado. Journal of Sedimentary Petrology 49(3), pp. 733-746. https://doi.org/10.1306/212F782E-2B24-11D7-8648000102C1865D

Fryberger, S.G., Al-Sari, A.M., Clisham, T.J., Rizvi, S.A.R., Al-Hinai, K.G., 1984. Wind sedimentation in the Jafurah sand sea, Saudi Arabia: Sedimentology, 31(3), pp. 413-431. https://doi.org/10.1111/j.1365-3091.1984.tb00869.x

Fryberger, S.G. and Schenk, C.J., 1988. Pin stripe lamination: a distinctive feature of modern and ancient eolian sediments. Sedimentary Geology, 55(1-2), pp. 1-15. https://doi.org/10.1016/0037-0738(88)90087-5

Fryberger, S.G., 1990a. Great Sand Dunes depositional system—an overview. In: S.G. Fryberger, L.F. Krystinik and C.J. Schenk. (eds.). Modern and Ancient Aeolian Deposits: Petroleum Exploration and Production. Denver: S.E.P.M., pp. 1-9. Available at: <https://archives.datapages.com/data/rocky_sepm/data/029/029001/1_rocky_mount290001.htm> [Accessed 22 May 2023].

Fryberger, S.G., 1990b. Role of water in eolian deposition. In: S.G. Fryberger, L.F. Krystinik and C.J. Schenk. (eds.). Modern and Ancient Aeolian Deposits: Petroleum Exploration and Production. Denver: S.E.P.M., pp. 41-52. Available at: <https://archives.datapages.com/data/rocky_sepm/data/029/029001/41_rocky_mount290041.htm> [Accessed 22 May 2023].

Fryberger, S.G., 1990c. Coastal eolian deposits of Oregon, USA, Guererro Negro, Mexico and Jafurah Sand Sea, Saudi Arabia, In: S.G. Fryberger, L.F. Krystinik and C.J. Schenk. (eds.). Modern and Ancient Aeolian Deposits: Petroleum Exploration and Production. Denver: S.E.P.M., pp. 109-123. Available at: <https://archives.datapages.com/data/rocky_sepm/data/029/029001/109_rocky_mount290109.htm> [Accessed 22 May 2023].

Fryberger, S.G., 1993. A review of aeolian bounding surfaces, with examples from the Permian Minnelusa Formation, USA. In: C.P. North and D.J. Prosser (eds.). Characterization of Fluvial and Aeolian Reservoirs. Geological Society, Special Publication, 73, pp. 167-197. https://doi.org/10.1144/GSL.SP.1993.073.01.11

Fúlfaro, V.J., Perinotto, J.A.J. e Barcelos, J.H., 1994. A margem goiana do Grupo Bauru: implicações na litoestratigrafia e paleogeografia. In: Simpósio sobre o Cretáceo do Brasil, 3, Rio Claro, Boletim, pp. 81-84.

García-Hidalgo, J.F., Temiño, J. and Segura, M., 2002. Holocene eolian sediments on the southern border of the Duero Basin (Spain): origin and development of an eolian system in a temperate zone: Journal of Sedimentary Research, 72(1), pp. 30-39. https://doi.org/10.1306/040501720030

Greenlee, G.M., 1981. Guidebook for use with soil survey reports of Alberta provincial parks and recreation areas. Alberta Research Council, ARC/AGS Earth Sciences Report 1981-01. Available at: <https://ags.aer.ca/publication/esr-1981-01> [Accessed 22 May 2023].

Gustavson, T.C. and Wrinkler, D.A., 1988. Depositional facies of the Miocene-Pliocene Ogallala Formation, northwestern Texas, and eastern New Mexico. Geology, 16(3), pp. 203-206. https://doi.org/10.1130/0091-7613(1988)016<0203:DFOTMP>2.3.CO;2

Gustavson, T.C. and Holliday, V.T., 1999. Eolian sedimentation and soil development on a semi-arid to subhumid grassland, Tertiary Ogallala and Quaternary Blackwater Draw formations, Texas, and New Mexico High Plains. Journal of Sedimentary Research, 69(3), pp. 622-634. https://doi.org/10.2110/jsr.69.622

Harms, J.C., 1969. Hydraulic significance of some sand ripples. Geological Society of American Bulletin, 80(3), pp. 363-396. https://doi.org/10.1130/0016-7606(1969)80[363:HSOSSR]2.0.CO;2

Harms, J.C., 1975. Stratification and sequence in prograding shoreline deposits. In: J. C. Harms, J. B. Southard, D. R. Spearing and R. G. Walker (eds.). Depositional Environments as Interpreted from Primary Sedimentary Structures and Stratification Sequences. Lecture notes for S.E.P.M. short course no. 2. https://doi.org/10.2110/scn.75.01.0081

Harwood, G., 1988. Microscopic techniques: II. Principles of sedimentary petrography. In: Tucker, M. (ed.). Techniques in Sedimentology. Blackwell Science, pp. 108-173.

Hummel, G. and Kocurek, G., 1984. Interdune areas of the back-Island dune field, North Padre Island, Texas: Sedimentary Geology, 39(1-2), pp. 1-26. https://doi.org/10.1016/0037-0738(84)90022-8

Hunter, R.E., 1977. Basic types of stratification in small eolian dunes. Sedimentology, 24(3), pp. 361-387. https://doi.org/10.1111/j.1365-3091.1977.tb00 128.x

Kocurek, G., 1981. Significance of interdune deposits and bounding surfaces in aeolian dune sands: Sedimentology, 28(6), pp. 753-780. https://doi.org/10.1111/j.1365-3091.1981.tb01941.x

Kocurek, G. and Fielder, G., 1982. Adhesion Structures. Journal of Sedimentary Petrology, 52(4), pp. 1229-1241. https://doi.org/10.1306/212F8102-2B24-11D7-8648000102C1865D

Kocurek, G. and Nielson, J., 1986. Conditions favourable to the formation of warm climate aeolian sand sheets, Sedimentology, 33(6), pp. 795-816. https://doi.org/10.1111/j.1365-3091.1986.tb00983.x

Kocurek, G., 1988. First-order and super bounding surfaces in eolian sequences - Bounding surfaces revisited. Sedimentary Geology, 56(1-4), pp. 193-206. https://doi.org/10.1016/0037-0738(88)90054-1

Kocurek, G. and Havholm, K.G., 1993. Eolian sequence stratigraphy – a conceptual framework. In: P. Weimer H. Posamentier (eds.). Siliciclastic sequence stratigraphy. Recent developments and applications. American Association of Petroleum Geologists Memoir, 58, pp. 393-409. https://doi.org/10.1306/M58581C16

Kocurek, G., 1999. The aeolian rock record (Yes, Virginia, it exists, but it really is rather special to create one). In: A. Goudie and I. Livingstone (eds.). Aeolian Environments, Sediments and Landforms. John Wiley, London, pp. 239-259.

Kocurek, G. and Lancaster, N., 1999. Aeolian system sediment state: theory and Mojave Desert Kelso dune field exemple, Sedimentology, 46(3), pp. 505-515. https://doi.org/10.1046/j.1365-3091.1999.00227.x

Kocurek, G., 2003. Limits on extreme eolian systems: Sahara of Mauritania and Jurassic Navajo Sandstone examples. In: M.A. Chan, A.W. Archer, (eds.). Extreme depositional environments: mega end members in geological time. Geological Society of America Special Paper, 370, pp. 43-52. https://doi.org/10.1130/0-8137-2370-1.43

Kraus, M.J. and Bown, T.M., 1986. Paleosols and time resolution in alluvial stratigraphy. In: V.P. Wright (ed.). In: Paleosols: their recognition and interpretation. Blackwell, Oxford, pp.180-207.

Lancaster, N., Greeley, R. and Christensen, P.R., 1987. Dunes of the Gran Desierto sand sea, Sonora, Mexico. Earth Surface Processes and Landforms, 12(3), pp. 277-288. https://doi.org/10.1002/esp.3290120306

Lancaster, N., 1993. Origins and sedimentary features of supersurfaces in the northwestern Gran Desierto sand sea. In: K. Pye and N. Lancaster (ed.). Aeolian Sedimentation: Ancient and Modern. The International Association of Sedimentologists, pp. 71-83. https://doi.org/10.1002/9781444303971.ch6

Lancaster, N., 1994. Dune morphology and dynamics. In: A.D. Abrahams and A.J. Parson (eds.). Geomorphology of desert environments. London: Chapman and Hall, pp. 474-505. Available at: <https://link.springer.com/chapter/10.1007/978-1-4020-5719-9_18> [Accessed 22 May 2023].

Langford, R.P. and Chan, M.A., 1989. Fluvial-aeolian interactions: part II, ancient systems. Sedimentology, 36(6), pp. 1037-1051. https://doi.org/10.1111/j.1365-3091.1989.tb01541.x

Langford, R.P., 1989. Fluvial-aeolian interactions: part I, modern systems. Sedimentology, 36(6), pp. 1023-1035. https://doi.org/10.1111/j.1365-3091.1989.tb01540.x

Loope, D.B. and Abegg, F.E., 2001. Recognition and geologic preservation of ancient carbonate eolianites. In: F.E. Abegg, P.M. Harris and D.B. Loope (eds.). Modern and Ancient Carbonate Eolianites: Sedimentology, Sequence Stratigraphy and Diagenesis. SEPM Society for Sedimentary Geology, 71, pp. 3-16. https://doi.org/10.2110/pec.01.71

Miall, A.D., 1985. Principles of sedimentary Basin Analysis. 2nd ed. Springer-Verlag, New York. https://doi.org/10.1007/978-3-662-03999-1

Miall, A. D., 1985. Architectural-element analysis: a new method of facies analysis applied to fluvial deposits. Earth Science Reviews, 22(4), pp. 261-308. https://doi.org/10.1016/0012-8252(85)90001-7

Miall, A.D., 1988a. Architetural elements and bouding surfaces in fluvial deposits: anatomy of the Kayenta Formation (Lower Jurassic) Southwest Colorado. Sedimentary Geology, 55(2), pp. 233-262. https://doi.org/10.1016/0037-0738(88)90133-9

Miall, A.D., 1988b. Reservoir heterogeneities in fluvial sandstones: lessons from outcrop studies. America Association Petroleum Geologists Bulletin, 72(6), pp. 682-697. https://doi.org/10.1306/703C8F01-1707-11D7-8645000102C1865D

Milani, E.J., Melo, J.H.G., Souza, P.A., Fernandes, L.A. e França, A.B., 2007. Bacia do Paraná. Boletim de Geociências da Petrobrás, 15(2), pp. 265-287.

Morrison, R.B., 1967. Principles of Quaternary soil stratigraphy. In: R.B. Morrison and H.E. Wright (eds.). Means of Correlation of Quaternary Successions. International Union for Quaternary Research, 9, pp. 1-69.

Mountney, N.P., 2006. Aeolian facies model. In: H.W. Posamentier and R.G. Walker (eds.). Facies models revisited. Society for Sedimentary Geology, Special Publication, 84, pp. 19-83. https://doi.org/10.2110/pec.06.84.0019

Newton, R.S., 1968. Internal structure of wave-formed ripple marks in the nearshore zone. Sedimentology, 11(3-4), pp. 275-292. https://doi.org/10.1111/j.1365-3091.1968.tb00857.x

Nichols, G., 2006. Chapter 8: Arid continental depositional environments. In: Sedimentology and Stratigraphy. pp. 96-110.

Olsen, H., Due, P.H. and Clemmensen, L.B., 1989. Morphology and genesis of asymmetric adhesion warts – a new adhesion surface structure. Sedimentary Geology, 61(3-4), pp. 277–285. https://doi.org/10.1016/0037-0738(89)90062-6

Riccomini, C., 1997. Arcabouço estrutural e aspectos do tectonismo gerador e deformador da Bacia Bauru no Estado de São Paulo. Revista Brasileira de Geociências, 27(2), pp. 153-162. http://doi.org/10.25249/0375-7536.1997153162

Tucker, M.E., 2001. Sedimentary Petrology: an introduction to the origin of sedimentary rocks. 3rd ed. Malden: Blackwell Science, London.

Vilela, P.C. e Basilici, G., 2009. Uso da Análise Petrológica na Interpretação dos processos de aporte e distribuição de sedimento em sistemas eólicos de lençol de areia: Formação Marília (Cretáceo Superior), In: XI Simpósio de Geologia do Sudeste, 11, São Pedro, Anais do Simp. de Geologia do Sudeste.

Vilela, P.C., 2010. Características Petrográficas de Depósitos e Paleossolos de Ambientes Desérticos: Formação Marília (Cretáceo Superior) na Região Sul de Goiás. In: Anais do X Congresso Nacional de Iniciação Científica.

Walker, R.G., 2006. Facies models revisited: introduction. In: H.W. Posamentier and R.G. Walker. (eds). Facies models revisited. Society for Sedimentary Geology, Special Publication, (84), pp. 1-19. https://doi.org/10.2110/pec.06.84

Yamaguchi, N. and Sekiguchi, H., 2010. Effects of settling and preferential deposition of sediment on ripple roundness under shoaling waves. Journal of Sedimentary Petrology, 80(9), pp. 781-790. https://doi.org/10.2110/jsr.2010.072

Zaher, H., Pol, D., Carvalho, A.B., Riccomini, C., Campos, D. and Navas, W., 2006. Re-description of the cranial morphology of Mariliasuchus amarali, and its phylogenetic affinities (Crocodyliformes, Notosuchia). American Museum Novitates, 3512, pp. 1-40.

Zalán, O.V., Wolff, S., Conceição, J.C.J., Marques, A., Astolfi, M.A.M., Vieira, I.S., Appi, V.T. e Zanotto, O.A., 1991. Bacia do Paraná. In: G.P.R. Gabaglia, and E.J. Milani (eds.). Origem e evolução de Bacias Sedimentares. Petrobrás, Rio de Janeiro, pp. 135-168.

Published
2023-10-30