Comparative analysis of slope classes and terrain ruggedness index using distinct digital elevation models in the Municipality of Jenipapo de Minas

Keywords: Aster GDEM, SRTM, TRI, Topography characteristics

Abstract

This study assesses terrain variability in the Municipality of Jenipapo de Minas, southeastern Brazil, using Digital Elevation Models (DEMs). The DEMs analyzed include the Shuttle Radar Topography Mission (SRTM) with 30-meter (SRTM30) and 90-meter (SRTM90) resolutions, as well as the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). The comparative analysis was based on topographic characteristics, such as slope and terrain ruggedness index (TRI) were derived from these models to analyze the landscape’s elevation changes. Results showed that elevation differences among the DEMs were similar. The predominant slope was undulating and heavily undulating, consistent with previous studies. The TRI results indicated a high incidence of level terrain, particularly in SRTM30 with 100% of the area and ASTER with almost 100%. However, in the SRTM90, the incidence of the nearly level and slightly Rugged TRI classes in 6.88% of the study area. These findings emphasize how DEM resolution influences terrain characterization, with implications for hydrological studies, environmental planning, and landscape management. Overall, the study underscores the necessity of carefully selecting DEM sources according to the specific analytical requirements, as well as the potential for using a combination of DEMs for a more comprehensive understanding of terrain dynamics across different spatial scales.

References

Abrams, M., Bailey, B., Tsu, H. and Hato, M., 2010. The ASTER Global DEM. Photogrammetric Engineering and Remote Sensing, 76(4), pp. 344-348.

AL-Areeq, A.M., Sharif, H.O., Abba, S.I., Chowdhury, S., Al-Suwaiyan, M., Benaafi, M., Yassin, M.A. and Aljundi, I.H., 2023. Digital elevation model for flood hazards analysis in complex terrain: Case study from Jeddah, Saudi Arabia. International Journal of Applied Earth Observation and Geoinformation, 119, p. 103330. https://doi.org/10.1016/j.jag.2023.103330

Arabameri, A., Tiefenbacher, J.P., Blaschke, T., Pradhan, B. and Bui, D.T., 2020. Morphometric Analysis for Soil Erosion Susceptibility Mapping Using Novel GIS-Based Ensemble Model. Remote sesing 12, p.874. https://doi.org/10.3390/rs12050874

Asran, A.M., Emam, A. and El-Fakharani, A., 2017. Geology, structure, geochemistry and ASTER-based mapping of Neoproterozoic Gebel El-Delihimmi granites, Central Eastern Desert of Egypt. Lithos, 282-283, pp. 358-372. https://doi.org/10.1016/j.lithos.2017.03.022

Bifet, A., Gavaldà, R., 2007. Learning from Time-Changing Data with Adaptive Windowing. In: Proceedings of the 2007 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, pp. 443–448. https://doi.org/10.1137/1.9781611972771.42

Brožová, N., Baggio, T., D'Agostino, V., Bühler, Y. and Bebi, P., 2021. Multiscale analysis of surface roughness for the improvement of natural hazard modelling. Natural Hazards and Earth System Sciences, 21(11), pp. 3539-3562. https://doi.org/10.5194/nhess-21-3539-2021

Cunha, E.R. and Bacani, V.M., 2016. Morphometric Characterization of a Watershed through SRTM Data and Geoprocessing Technique. Journal of Geographic Information System 8, pp.238-247. http://dx.doi.org/10.4236/jgis.2016.82021

Dell'Acqua, F. and Gamba, P., 2002. Preparing an urban test site for SRTM data validation. IEEE Transactions on Geoscience and Remote Sensing, 40(10), pp. 2248–2256. https://doi.org/10.1109/TGRS.2002.802876

Denker, H., 2005. Evaluation of SRTM3 and GTOPO30 Terrain Data in Germany. In: Jekeli, C., Bastos, L., Fernandes, J. (eds), 2005. Gravity, Geoid and Space Missions. International Association of Geodesy Symposia, 129, pp.218-223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26932-0_38

Dian, Y., Guo, Z., Liu, H., Lin, H., Huang, L., Han, Z., Zhou, M., Cui, H. and Wang, P., 2024. A new index integrating forestry and ecology models for quantitatively characterizing forest carbon sequestration potential ability in a subtropical region. Ecological Indicators, 158, p. 111358. https://doi.org/10.1016/j.ecolind.2023.111358

EL-Omairi, M.A., Garouani, A.E., Shebl, A. Investigation of lineament extraction: Analysis and comparison of digital elevation models in the Ait Semgane region, Morocco. Remote Sensing Applications: Society and Environment, 36, p. 101321. https://doi.org/10.1016/j.rsase.2024.101321

Embrapa – Empresa Brasileira de Pesquisa Agropecuária, 1979. Relevo. In: Serviço Nacional de Levantamento e Conservação de Solos. Súmula da X reunião técnica de levantamento de solos. p.27. Rio de Janeiro. Available at: <https://ainfo.cnptia.embrapa.br/digital/bitstream/item/212100/1/SNLCS-Miscelania-1-1979.pdf> [Accessed 10 February 2020].

Esin, A.İ., Akgul, M., Akay, A.O. and Yurtseven, H., 2021. Comparison of LiDAR-based morphometric analysis of a drainage basin with results obtained from UAV, TOPO, ASTER and SRTM-based DEMs. Arabian Journal of Geosciences, 14, p. 340. https://doi.org/10.1007/s12517-021-06705-3

Farr, T.G., Rosen, A.P., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D. and Alsdorf, D., 2007. The Shuttle Radar Topography Mission. Reviews of Geophysics, 45(2), pp. 1-33. https://doi.org/10.1029/2005RG000183

Gomes, J.L.S., 2020. Morphometric characterization of the Todos os Santos river basin in Minas Gerais – Brazil. International Journal of Geoscience, Engineering and Technology, 1(1), pp. 1-6. https://doi.org/10.70597/ijget.v1i1.361

Gomes, J.L.S. and Gomes, A.J.L., 2015. Morfometria do Município de Jenipapo de Minas

no Vale do Jequitinhonha. Vozes dos Vales, (8), pp. 1-15. Available at: <http://site.ufvjm.edu.br/revistamultidisciplinar/files/2015/11/Antonio.pdf> [Accessed 10 February 2024].

Gomes, J.L.S. and Gomes, A.J.L., 2023a. Mapa Hipsométrico do Município de Jenipapo de Minas. Geovales. [online] Available at: <https://64950d2b-2638-497b-9aa0-8f3bdf54c4e1.filesusr.com/ugd/3e616a_9d8149e5e900482d93744cb103fedd25.pdf> [Accessed 10 February 2024].

Gomes, J.L.S. and Gomes, A.J.L., 2023b. Mapa Declividade do Município de Jenipapo de Minas. Geovales. [online] Available at: <https://64950d2b-2638-497b-9aa0-8f3bdf54c4e1.filesusr.com/ugd/3e616a_d1ae7e4d96e642439a49a61bba3a8513.pdf> [Accessed 15 February 2024].

Gomes, J.L.S., Vieira, F.P. and Hamza, V.M., 2018. Use of electrical resistivity tomography in selection of sites for underground dams in a semiarid region in southeastern Brazil. Groundwater for Sustainable Development, 7, pp. 232-238. https://doi.org/10.1016/j.gsd.2018.06.001

Grohmann, C.H., Riccomini, C. and Steiner, S.S., 2008. SRTM DEMSs applications in Geomorphology. Revista Geográfica Acadêmica, 2(2), pp. 79-83. https://doi.org/10.31223/osf.io/amn2t

IBGE – Instituto Brasileiro de Geografia e Estatística, 2022a. Jenipapo de Minas. Available at: <https://www.ibge.gov.br/cidades-e-estados/mg/jenipapo-de-minas.html> [Accessed 10 September 2024].

IBGE – Instituto Brasileiro de Geografia e Estatística, 2022b. Malha Municipal. Available at: <https://www.ibge.gov.br/geociencias/organizacao-do-territorio/malhas-territoriais/15774-malhas.html> [Accessed 10 September 2024].

Jarvis, A., Reuter, H.I., Nelson, A. and Guevara, E., 2008. Hole-Filled Seamless SRTM Data V4. International Centre for Tropical Agriculture (CIAT), Cali. Available at: <http://srtm.csi.cgiar.org> [Accessed 10 September 2024].

Lepsch, I.F., Bellinazzi Junior, R., Bertolini, D. and Espíndola, C.R., 1991. Manual para levantamento utilitário do meio físico e classificação de terras no sistema de capacidade de uso. Campinas: Sociedade Brasileira de Ciência de Solo.

LaLonde, T., Shortridge, A. and Messina, J., 2010. The Influence of Land Cover on Shuttle Radar Topography Mission (SRTM) Elevations in Low-relief Areas. Transactions in GIS, 14(4), pp. 461-479. https://doi.org/10.1111/j.1467-9671.2010.01217.x

Listyani, T.R.A., 2019. Criticise of Van Zuidam Classification: A Purpose of Landform Unit. Prosiding Nasional Rekayasa Teknologi Industri dan Informasi (ReTII), XIV, pp.332-337.

Liu, Z., Zhu, J., Fu, H., Zhou, C. and Zuo, T., 2020. Evaluation of the Vertical Accuracy of Open Global DEMs over Steep Terrain Regions Using ICESat Data: A Case Study over Hunan Province, China. Sensors, 20(17), pp. 1-16. https://doi.org/10.3390/s20174865

Moudrý, V., Lecours, V., Gdulová, K., Gábor, L., Moudrá, L., Kropáček, J., and Wild, J., 2018. On the use of global DEMs in ecological modelling and the accuracy of new bare-earth DEMs. Ecological Modelling, 383, pp. 3-9. https://doi.org/10.1016/j.ecolmodel.2018.05.006

Nikolakopoulos, K.G., Kamaratakis, E.K. and Chrysoulakis, N., 2006. SRTM vs. ASTER Elevation Products. Comparison for Two Regions in Crete, Greece. International Journal of Remote Sensing, 27, pp. 4819-4838. https://doi.org/10.1080/01431160600835853

Okolie, C.J. and Smit, J.L., 2022. A systematic review and meta-analysis of Digital elevation model (DEM) fusion: pre-processing, methods and applications. ISPRS Journal of Photogrammetry and Remote Sensing, 188, pp. 1-29. https://doi.org/10.1016/j.isprsjprs.2022.03.016

Ouerghi, S., ELsheikh, R.F.A., Achour, H. and Bouazi, S., 2015. Evaluation and Validation of Recent Freely-Available ASTER-GDEM V.2, SRTM V.4.1 and the DEM Derived from Topographical Map over SW Grombalia (Test Area) in North East of Tunisia. Journal of Geographic Information System, 7, pp. 266-279. http://dx.doi.org/10.4236/jgis.2015.73021

Passini, R., Jacobsen, K., 2007. High Resolution SRTM Height Models: In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (IntArchPhRS XXXVI), 36. Band 1/W51. Hannover. Available at: <https://www.isprs.org/proceedings/xxxvi/1-w51/paper/Passini_jac.pdf> [Accessed 10 September 2024].

Riley, S.J., DeGloria, S.D., Elliott, R., 1999. A terrain ruggedness index that quantifies topographic heterogeneity. Intermountain Journal of Sciences, 5(1-4), pp. 23-27. Available at: <https://download.osgeo.org/qgis/doc/reference-docs/Terrain_Ruggedness_Index.pdf> [Accessed 10 September 2024].

Rodríguez, E., Morris, C. and Belz, J.E., 2006. A global assessment of the SRTM performance. Photogrammetric Engineering and Remote Sensing, 72(3), pp. 249-60. https://doi.org/10.14358/PERS.72.3.249

Rossetti, D.F. and Valeriano, M.M., 2007. Evolution of the lowest amazon basin modeled from the integration of geological and SRTM topographic data. CATENA, 70(2), pp. 253-265. https://doi.org/10.1016/j.catena.2006.08.009

Shen, L., Wei, Z., Wang, Y., 2021. Determining the Rolling Window Size of Deep Neural Network Based Models on Time Series Forecasting. Journal of Physics: Conference Series, 2078. https://doi.org/10.1088/1742-6596/2078/1/012011

Silva, A.C., Gomes, J.L.S. and Oliveira, V.P.S., 2023. Identificação dos diferentes usos e ocupação do solo na Reserva Ecológica de Guapiaçu (REGUA) com vista à sustentabilidade. In: Simpósio de Gestão Ambiental e Biodiversidade (SIGABI), 12. 2023, Três Rios(RJ) UFRRJ. http://dx.doi.org/10.29327/1326957.12-2

Suwandana, E., Kawamura, K., Sakuno, Y. and Kustiyanto, E., 2011. Thematic information content assessment of the ASTER GDEM: a case study of watershed delineation in West Java, Indonesia. Remote Sensing Letters, 3(5), pp. 423–432. https://doi.org/10.1080/01431161.2011.593580

Thakuri, S., Parajuli, B.P., Shakya, P., Baskota, P., Pradhan, D., Chauhan, R., 2022. Open-Source Data Alternatives and Models for Flood Risk Management in Nepal. Remote Sensing, 14(22), pp.1-28. https://doi.org/10.3390/rs14225660

Thomas, J., Joseph, S., Thrivikramji, K.P. and Arunkumar, K.S., 2014. Sensitivity of digital elevation models: The scenario from two tropical mountain river basins of the Western Ghats, India. Geoscience Frontiers, 5(6), pp. 893-909. https://doi.org/10.1016/j.gsf.2013.12.008

Trevisani, S., Teza, G. and Guth, P.J., 2023. Hacking the topographic ruggedness index. Geomorphology, 439, p. 108838. https://doi.org/10.1016/j.geomorph.2023.108838

Uuemaa, E., Ahi, S., Montibeller, B., Muru, M., Kmoch, A., 2020. Vertical Accuracy of Freely Available Global Digital Elevation Models (ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM). Remote Sensing, 12(21), p. 3482. https://doi.org/10.3390/rs12213482

Van Zyl, J.J., 2001. The Shuttle Radar Topography Mission (SRTM): a breakthrough in remote sensing of topography. Acta Astronautica, 48(5-12), pp. 559–565. https://doi.org/10.1016/S0094-5765(01)00020-0

Van Zuidam, R.A., 1983. Guide to Geomorphologic Aerial Photographic Interpretation & Mapping. Netherlands: International Institute for Aerial Survey and Earth Sciences (ITC).

Van Zuidam, R.A. and Van Zuidam-Cancelado, F.I., 1979. Terrain Analysis and Classification using Aerial Photographs. Tectbook VII-6, Netherland: International Institute for Aerial Survey and Earth Sciences (ITC).

Published
2024-10-31