Well Log Data Statistical Processing for Unbiased Qualitative and Quantitative Analyses: Case Study from the Gulf of Guinea

Resumo

Over oil and gas fields exploration and development phases, one of the main challenges of geoscientists and petroleum engineers is the petrophysical characterization of potential or discovered fields or reservoirs. Well logs data play key roles in wells stratigraphic column establishment and the computation of reservoir formations petrophysical parameters. Due to the conditions and the environment of well log data acquisition, they undergo some technical processing. For gamma ray log data for instance, although the technical data processing, the representative minimum and maximum values of recorded GR are required for unbiased qualitative and quantitative analyses. This study aims to propose statistical techniques for gamma ray logs data processing that will contribute to the reduction of biases related to their qualitative and quantitative analyses. A case study has been performed on a Gulf of Guinea’s offshore well gamma ray log data. The results show that the difference between the maximum and minimum values for the semi-processed data is almost twice the one of the processed data, what will lead to the underestimation of formations shale volumes and therefore to the overestimation of reservoirs effective porosity and flow performance. Moreover, the baselines (shaly sand, sandy shale and shale baselines) obtained from the semi-processed data are respectively located more leftward to those from the processed data. The main consequence is that the semi-processed data analysis has hidden the shaliness of formations comparatively to the processed data analysis. A comparative analysis shows that the semi-processed data analysis has globally underestimated the thickness of thicker formations and underestimate the shale volumes of thicker formations and those for which the estimated thicknesses from both analyses are the same or close to each other. In summary, the statistical processing of gamma ray log data prevents from the underestimation of thicker formations thicknesses and formations shale volumes. The main practical advantage is that it will prevent geologists, petro-physicists and reservoir engineers from the overestimation of oil or gas reservoirs effective porosity and flow performance and therefore from the overestimation of oil or gas initially in place and reserves.

Referências

Aguinis, H., Ryan, K.G. and Harry, J., 2013. Best-Practice Recommendations for Defining, Identifying, and Handling Outliers. Organizational Research Methods 16(2), pp. 270-301. https://doi.org/10.1177/1094428112470848.

Asquith, G. and Krygowski, D., 2004. Basic well log analysis, Second edition. AAPG, Methods in Exploration Series, No. 16. American Association of Petroleum Geologists, Tlsa, Oklahoma. https://doi.org/10.1306/Mth16823

Baron, J., Cariou, J. and Thorion, R., 1989. Les diagraphies nucléaires développées par les LPC Principes physiques, mise en œuvre, domaines d'application. Liaison Labo. P. et Ch – 164, nov-dec 1989 – Ref – 3446. French.

Bateman, R.M., 2020. Formation evaluation with pre-digital well logs. Elsevier Inc., Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands. https://doi.org/10.1016/C2018-0-03023-6

Bassiouni, Z., 1994. Theory, Measurement and Interpretation of Well Logs. SPE Text Book Series Vol. 4, Society of Petroleum Engineer, Texas, USA. https://doi.org/10.2118/9781555630560

HLS Asia Limited, 2007. Basic log interpretation. Log Interpretation Seminar/ Workshop (14th – 16th May 2007, New Delhi). HLS Asia Limited, 2007.

Chapelier, D., 2004. Diagraphie Pétrole. Support de cours. Cours online de géophysique : Cours de Diagraphies Différées - Option Réservoirs. Université de Lausanne, Institut Français de Pétrole. French.

Cuisineau, D., and Chartier, S., 2010. Outliers detection and treatment: a review. International Journal of Psychological Research, 3(1), pp. 59-68.

Djoï, N.A., Nwosu, I.J. and Ikiensikimam,a S.S., 2023. Stochastic Activity-Based Time and Cost (S-ATC) Model for Oil Wells: Case Study of Niger Delta Onshore, Nigeria. International Journal of Engineering Trends and Technology, 71(5), pp. 49-69. https://doi.org/10.14445/22315381/IJETT-V71I5P206

Djoï, N.A., Nwosu, I.J. and Ikiensikimama S.S., 2022. Hydrocarbon Reservoir Petrophysical Characterization with Statistical Simulations: A Case Study from the Gulf of Guinea. International Journal of Scientific Research and Engineering Development, 5(2), pp. 298-308.

Djoï, N.A., 2015. Détermination de l’intervalle de perforation du puits X. Rapport de travaux. Société Béninoise des hydrocarbures, Ministère de l’Energie, Bénin. French.

Djoï, N.A., 2012. Détermination des Paramètres Pétrophysiques de Réservoir à Partir des Diagraphies Différées. Rapport de stage de production. Ecole Supérieure des Mines et de Géologie. Ecole Supérieure des Mines et de Géologie, Institut National Polytechnique Félis Houphouët -Boigny, Côte d’Ivoire. French.

Ekwere, J.P. 2004. Petrophysics. Department of Petroleum and Geosystem Engineering. University of Texas at Austin, USA 78712.

Fadiya, S.L., Alao, O.A. and Adetuwo, A.M., 2018. A Comparative Study of the Methods of Determining Shale Volume in Radioactive Reservoirs of “AMA” Field, Niger Delta, Nigeria. International Journal for Research in Emerging Science and Technology, 5(4), pp. 1-39.

Hamada, G.M., 1996. An Integrated Approach to Determine Shale Volume and Hydrocarbon Potential in Shaly Sand. In: Society of Core Analysts Conference, SCA. Number 9641.

Iglewicz, B. and Hoaglin, D.C., 1993. How to Detect and Handle Outlier. American Society for Quality Control, Statistics Division, vol. 16, 1993.

Illowsky, B. and Dean, S., 2021. Introductory Statistics, 4th Edition. College of Lake County, penStax College Publisher, July 2021.

Joseph, C.W., 2015. An Introduction to the Science of Statistics: From Theory to Implementation. Preliminary Edition, June 2015.

Kamayoul, V.M., Ehirim, C.N. and Ikiensikimama, S.S., 2021. Estimating Volume of Shale in a Clastic Niger Delta Reservoir from Well Logs: A Comparative Study. International Journal of Geosciences, 12(10), pp. 949-959. https://doi.org/10.4236/ijg.2021.1210049

Kamel, M.H. and Mabrouk, W.M., 2003. Estimation of shale volume using a combination of the three porosity logs. Journal of Petroleum Science and Engineering 40(3-4), pp. 145 – 157. https://doi.org/10.1016/S0920-4105(03)00120-7

Karacan, O.C., 2009. Reservoir rock properties of coal measure strata of the Lower Monongahela Group, Greene County (Southwestern Pennsylvania), from methane control and production perspectives. CDC/NIOSH Pittsburgh Research Laboratory, Disaster Prevention and Response Branch, 626 Cochrans Mill Road, PO Box 18070, Pittsburgh PA, 15236, United States.

Maget, Ph., 1990. Les diagraphies en forage: Initiation aux méthodes et aux interprétations, Application en géothermie. Rapport du B.R.G.M 85 SGN 034 SPG. Service de Géothermie, A.F.M.E - B.R.G.M. French.

Mohammed, O.A.A., 2021. Machine learning based shale volume prediction from the Norwegian North Sea. MSc Thesis, Faculty of Science and Technology, University of Stavanger.

Szabó, N.P., 2011. Shale volume estimation based on the factor analysis of well-logging data. Acta Geophysica, 59, Pp. 935-953. https://doi.org/10.2478/s11600-011-0034-0

Oberto, S., 1984. Fundamentals of well-log interpretation: The acquisition of logging data. Developments in Petroleum Science, 15A. Elsevier Science Publishers B.V., 1984, Amsterdam.

Rabaute, A., 2009. Obtenir une représentation en continu de la lithologie et de la minéralogie. Exemples d'application du traitement statistique de données de diagraphie aux structures sédimentaires en régime de convergence de plaques (Leg ODP 134, 156 et 160). Thèse de doctorat. Université de Montpellier II Sciences et Techniques du Languedoc. French.

Schlumberger, 2004. Gamma ray correction for hole size and mud weight Charts. 225 Schlumberger Drive, Sugar Land, Texas 77478.

Schlumberger, 2009. Log Interpretation Principles/Applications and Well Log Interpretation Charts. 225 Schlumberger Drive, Sugar Land, Texas 77478.

Wikipedia, the free encyclopedia, 2024. Stratigraphic column. Available at: <https://en.wikipedia.org/wiki/Stratigraphic_column>. [Accessed 25 Jan 2024].

Williamson, H.S., Sawaryn, S.J. and Morrison, J.W., 2006. Monte Carlo Techniques Applied to Well Forecasting: Some Pitfalls. SPE Drill & Compl 21(03), pp. 216-227. Society of Petroleum Engineers (SPE), SPE Annual Technical Conference and Exhibition. https://doi.org/10.2118/89984-PA

Publicado
2024-04-30